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The free vibration of thin cylinders with elastic boundary conditions was
analysed by application of the exact solution of the Flügge shell theory equations
of motion. The elastic boundaries were represented by distributed linear springs.
By varying the eight spring constants any elastic or ideal boundary conditions can
be simulated. The effect of flexibility in the boundary conditions for a cylinder
supported at both ends and a cylinder supported at one end was determined for
the lowest frequency vibration mode with two circumferential wavelengths as this
mode is used in vibratory gyroscopes. It was found that the tangential stiffness
has the greatest effect on the natural frequency of the cylinder supported at both
ends while the axial boundary stiffness has the greatest influence on the natural
frequency of the cylinder supported at one end. The effect of low rotation rates
was also determined for these boundary conditions. It was found that the
tangential stiffness of the boundaries has the largest effect on the sensitivity to
rotation. The lowest frequency vibration mode with four circumferential
wavelengths did not show the same trends. A range of boundary stiffnesses for
which analysis as an elastic boundary is essential was determined. Boundary
stiffnesses out of this range may be regarded as zero (free) or infinite (rigid).
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1. INTRODUCTION

The vibration of thin elastic shells has been studied by many researchers. The
results of many of these studies have been summarised by Leissa [1] and Blevins
[2]. The literature contains numerous analyses of thin cylindrical shells with ideal
boundary conditions classed, for example, as clamped, free, simply supported with
axial constraint and simply supported without axial constraint. In reality, the
perfect clamped boundary condition cannot be achieved as there will always be
some flexibility in the support. The effects of this flexibility are investigated in this
paper.
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The effect of rotation on the vibration of a cylinder was first analysed by Bryan
[3] in 1890. Bryan showed that rotation causes the nodes of a standing wave
pattern to rotate relative to the cylinder. The vibrating pattern lags behind the
rotation of the cylinder. This effect, which is referred to as the Bryan effect, is used
today in a class of angular rotation rate sensors which are based on vibrating
cylinders [4–7]. The influence of boundary conditions on the natural frequencies
and sensitivity to rotation is of importance in the design of these sensors.

Three methods are generally applied to the analysis of thin cylindrical shell
vibration. Exact solution of waves propagating in infinite, hollow cylinders, based
on the three-dimensional theory of elasticity, was described by Armenàkas et al.
[8]. This solution is also valid for simply supported shells and serves as a
benchmark against which results from analyses based on shell theories can be
evaluated. Approximate analyses based on various shell theories have been
performed using the Rayleigh–Ritz method [1, 2]. Exact solution of the Flügge
shell theory equations of motion has been performed by various authors [9–12]
in which different ideal boundary conditions were analysed. The solutions achieved
by this approach are accurate within the limits of the shell theory used.

In this work the general analysis procedure presented by Warburton [10] is
adopted and extended to include elastic boundary conditions and rotation of the
cylindrical shell. The elastic boundary conditions are represented by distributed
springs along the edges of the cylinder. By varying the stiffness coefficients of these
springs it is possible to represent any of the ideal boundary conditions and also
to investigate the effect of departures from the ideal conditions. Using this method
the effect of elastic boundary conditions on the free vibrations of cylindrical shells
can be quantified.

2. THEORETICAL FORMULATION

The derivation presented here follows that of Warburton [10] but includes the
elastic supports in the potential energy and the rotation rate in the kinetic energy.
The effect of centrifugal forces producing a deformed equilibrium position with
stresses which contribute to the potential energy has been neglected. Analysis of
high rotation rates requires the calculation of the stresses in the equilibrium
position which is beyond the scope of the present paper. Centrifugal forces arising
from the kinetic energy which are proportional to the square of the rotation rate,
have therefore also been neglected. The analysis is therefore only valid for rotation
rates well below the natural frequencies of interest.

2.1.     

The kinetic energy of the rotating cylinder may be written as follows
(nomenclature is listed in Appendix B):
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Figure 1. (a) Definition of co-ordinates and dimensions. (b) Elastic boundary conditions shown
on a segment of the cylinder.

The potential energy of the system is the sum of the strain energy of the cylindrical
shell and the strain energy stored in the elastic boundaries. Flügge shell theory is
used, therefore four distributed springs are required to represent the elastic
boundary conditions at each end of the cylinder as shown in Figure 1.

The potential energy may be written as follows (note that the radial
displacement is defined as positive outwards while in [10] it was positive inwards):
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2.2.      

The following equations of motion and boundary conditions were derived by
application of Hamilton’s principle using the above expressions for the potential
and kinetic energies. Terms proportional to the square of the rotation rate were
omitted while the Coriolis forces were retained. The equations of motion in the
axial, tangential and radial directions are presented in equation (3).
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At x=0 the boundary conditions are:
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At x=L the boundary conditions are:
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The boundary conditions at the ends of the cylinder provide the conditions for
force equilibrium. The boundary conditions at each end of the cylinder are
identical except for the sign difference in the distributed spring forces. Note that
in the second boundary condition at each end of the cylinder there is a factor 3
in the term dependent on b. This factor was not present in [10] as the actual shear
force instead of the effective shear force was used in that work [11]. This difference
has only small influence on the resulting natural frequencies.
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2.3.      

The general solution, used by Warburton, represents a standing wave and is
applicable for the non-rotating cylinder. For the rotation cylinder it is necessary
to use the more general travelling wave solution listed below.

u=U0 eax/a cos (nf+vt)

v=V0 eax/a sin (nf+vt)

w=W0 eax/a cos (nf+vt). (5)

Substitution of this general solution into the equations of motion (3) yields the
following system of equations:
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where, the frequency factor, D=vazr(1− n2)/E.
Non-trivial solutions of this system of equations are found by equating the

determinant to zero. For a given cylinder, if the frequency factor (D), the rotation
rate (V) and the number of circumferential waves (n) are specified the determinant
can be written as a quartic in a2. In the calculation of the determinant, squares
and higher powers of b were neglected. The roots of this equation yield the values
of a that satisfy the equations of motion and are the admissible axial wave
numbers.

The frequency factor for the infinite cylinder is given by D2
R = b{[n2(n2 −1)2]/

[(n2 +1)]}. At frequencies greater than the natural frequency of an infinite cylinder
the roots have the form 2a1, 2ig2, 2(p2 iq), where a1, g2, p and q are real and
positive [10]. Once the roots have been determined it is possible to use equation
(6) to calculate the amplitude ratios as was done in reference [10]. The equations
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required for this procedure, including the gyroscopic terms, are included in
Appendix A. The displacement functions can then be written as follows:

W(x)=C1 cosh
a1x
a

+C2 sinh
a1x
a

+C3 cos
g2x
a

+C4 sin
g2x
a

+epx/a0C5 cos
qx
a

+C6 sin
qx
a 1+e−px/a0C7 cos

qx
a

+C8 sin
qx
a 1 (7a)

V(x)=A1C1 cosh
a1x
a

+A1C2 sinh
a1x
a

+A3C3 cos
g2x
a

+A3C4 sin
g2x
a

+epx/a$(A5C5 +A6C6) cos
qx
a

+(A5C6 −A6C5) sin
qx
a %

+e−px/a$(A5C7 −A6C8) cos
qx
a

+(A5C8 +A6C7) sin
qx
a % (7b)

U(x)=A2C2 cosh
a1x
a

+A2C1 sinh
a1x
a

+A4C4 cos
g2x
a

−A4C3 sin
g2x
a

+epx/a$(A7C5 +A8C6) cos
qx
a

+(A7C6 −A8C5) sin
qx
a %

+e−px/a$(−A7C7 +A8C8) cos
qx
a

+(−A7C8 −A8C7) sin
qx
a % (7c)

where the amplitude ratios (A1, . . . , A8) are real constants, defined in Appendix
A, and the unknown coefficients (C1, . . . , C8) depend on the boundary conditions.

Substitution of the displacement functions (7) into the boundary conditions (4)
produces a homogeneous system of equations in the unknown displacement
coefficients (C1, . . . , C8). This system of equations may be written in matrix form
and the determinant of the matrix must once again be zero for non-trivial
solutions. For this determinant to be zero the correct frequency must be chosen
at the beginning of the procedure and it is necessary to iteratively search for the
frequencies which produce non-trivial solutions. These frequencies correspond to
the natural frequencies of the cylinder for the selected number of circumferential
waves. The index m is commonly used to number the axial modes starting from
the lowest frequency mode (m=1). During each iteration the roots of the
characteristic equation, given by the determinant of equation (6), and the
amplitude ratios, defined in Appendix A, have to be computed.

2.4.    

If the cylinder is not rotating and a travelling wave solution with frequency v
is found there will also be a solution with frequency−v because the travelling
wave can travel in either direction around the cylinder. When a rotation rate is
applied the positive and negative travelling waves no longer have the same
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magnitude of frequency. For low rotation rates the two travelling wave solutions
have almost identical amplitude ratios and may be combined and represented as
a ‘‘standing wave’’ which rotates relative to the cylinder [13]. The rotation rate of
the ‘‘standing wave’’ may be related to the positive and negative frequencies (vp

and vq ) by considering the combination of the two travelling waves as follows [13]:

cos (nf+vpt)+ cos (nf+vqt)=2 cos [n(f+ 1
2(vp +vq )t/n)] cos 1

2(vp −vq )t.
(8)

This equation shows that the two travelling waves may be represented as a
‘‘standing wave’’ with frequency 1

2(vp −vq ) which rotates relative to the cylinder
at a rate of 1

2(vp +vq )/n. The ratio of this precession of the ‘‘standing wave’’
(relative to the cylinder) to the angular rotation rate applied to the cylinder is
called the Bryan Factor and gives a measure of the sensitivity of the mode of
vibration of the cylinder to rotation. The Bryan Factor is defined as follows:

BF= 1
2nV

(vp +wq ). (9)

Bryan showed that for rings and infinite cylinders performing inextensional
oscillations this factor is equal to 2/(n2 +1). Therefore, the vibrating pattern will
lag the applied rotation rate, V by 0·4V, 0·2V and 0·118V for n=2, 3 and 4
respectively. The decrease in Bryan Factor with increasing number of
circumferential waves is one reason that the n=2 mode is generally selected for
use in vibratory gyroscopes.

For the low rotation rates being considered it is possible to calculate the Bryan
Factor from the displacement functions of the non-rotating cylinder as follows
[14]:

BF=2
n

g
L
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n(x)w(x) dx

g
L

0

(u(x)2 + n(x)2 +w(x)2) dx

. (10)

For low rotation rates equations (9) and (10) give the same result.

3. RESULTS

To verify the analysis, various non-rotating cylinders with idealised boundary
conditions were analysed and compared to published results. These results, for a

T 1
Comparison with published results

L/a h/a n m Boundary conditions Dliterature D

1·14 0·05 2 1 Clamped–free 0·308[11] 0·308
1·37 0·05 4 1 Clamped–free 0·245[11] 0·245
1 0·05 4 1 Simply supported–simply supported 0·492[8] 0·496
1 0·10 4 1 Simply supported–simply supported 0·752[8] 0·779
1 0·05 2 1 Simply supported–simply supported 0·675[8] 0·677
1 0·10 2 1 Simply supported–simply supported 0·738[8] 0·747
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Figure 2. Influence of boundary stiffness on frequency factor of a steel cylinder supported at
both ends. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·05, a=6·25 mm, n=2.)

selection of geometries and circumferential wave numbers, are isted in Table 1. The
results for the clamped–free boundary conditions agree with the results presented
in reference [11]. This indicates that the numerical implementation of the algorithm
is correct. The comparison with results from the exact solution of the three

Figure 3. Influence of boundary stiffness on frequency factor of a steel cylinder supported at one
end. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·1, a=6·25 mm, n=2.)
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Figure 4. Influence of boundary stiffness on Bryan Factor of a steel cylinder supported at
both ends. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·05, a=6·25 mm, n=2.)

dimensional elasticity problem [8] shows the accuracy of the method, based on
Flügge shell theory, for calculating natural frequencies of simply supported
cylinders without axial constraint. It is noted that the accuracy of the method
decreases as the thickness to radius ratio increases and also as the number of waves
around the circumference increases.

Figure 5. Influence of boundary stiffness on Bryan Factor of a steel cylinder supported at
one end. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' .
(L/a=1, h/a=0·1, a=6·25 mm, n=2.)
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Figure 6. Influence of boundary stiffness on frequency factor of a steel cylinder supported at
both ends. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·05, a=6·25 mm, n=4.)

The influence of boundary stiffnesses, on the natural frequencies, for the case
of two circumferential waves was investigated as this vibration mode is generally
used in vibrating cylinder gyroscopes. Firstly, a cylinder supported at both ends,
with two circumferential waves, was considered. The boundary stiffness in one

Figure 7. Influence of boundary stiffness on frequency factor of a steel cylinder supported at
one end. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·1, a=6·25 mm, n=4.)
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Figure 8. Influence of boundary stiffness on Bryan Factor of a steel cylinder supported at
both ends. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·05, a=6·25 mm, n=4.)

direction was then varied at both ends while the other stiffnesses had high values
representing rigid boundaries. The natural frequency was calculated for each
combination of boundary stiffnesses. For example, the value of ku (the axial
stiffness) was varied at both ends of the cylinder while the other stiffnesses were

Figure 9. Influence of boundary stiffness on Bryan Factor of a steel cylinder supported at
one end. ——, varying k*u ; - - - , varying k*v ; - · - · - , varying k*w ; . . . . , varying k*w' . (L/a=1,
h/a=0·1, a=6·25 mm, n=4.)



D.R. 858834 JSV 217/3 (Issue) MS 2671

    559

set to a large constant value. Secondly, a cylinder supported at one end and
free at the other end was considered. At the free end the spring constants were
set to zero while at the supported end one spring constant was varied while the
others were kept high. The spring constants may be non-dimensionalised as
follows:

k*u =
ku

Eh/L
; k*n =

kn

Eh/L
; k*w =

kw

Eh/L
; k*w' =

kw'

Eh3/L
.

The results of the analysis of the cylinder with equal boundary conditions at either
end are shown in Figure 2. In the figure the variation of the frequency factor with
boundary stiffness for the case of two waves around the circumference is
illustrated. It is seen that the tangential stiffness has a large effect on the natural
frequency. The radial and radial bending stiffnesses have a smaller influence while
reducing the axial stiffness has a negligible effect. The case of a cylinder supported
at one end and free at the other is illustrated in Figure 3. Here it is found that
the axial stiffness has an extremely large influence on natural frequency while the
other stiffnesses have smaller influence. Removing the axial constraint reduced the
natural frequency of this mode by 75%. In all cases increasing the boundary
stiffnesses increased the natural frequency as expected.

The influence of boundary stiffness on Bryan Factor is presented in Figures 4
and 5 for the cylinder supported at both ends and the cylinder supported only at
one end respectively. It is evident that the tangential stiffness tends to decrease the
Bryan Factor significantly in the cylinder supported at both ends and to a lesser
extent in the cylinder supported at one end. The axial restraint increased the Bryan
Factor of the cylinder supported at one end but decreased the Bryan Factor of
the cylinder supported at both ends. In general the Bryan Factor is greater and
also less sensitive to boundary stiffness variations when the cylinder is supported
at only one end. The Bryan Factor of the short cylinder (L/a=1) clamped at one
end was found to be 0·3556 which is only 11% lower than the Bryan Factor of
a ring or infinite cylinder.

Equation (10) shows that the Bryan Factor is dependent on the product of the
tangential and radial displacements integrated over the length of the cylinder. It
appears that restraining the tangential motion of the ends of the cylinder (for the
n=2 case) tends to reduce the tangential motion and therefore reduces the Bryan
Factor. The axial displacement reduces the Bryan Factor and it is expected that
the Bryan Factor of finite cylinders will be less than that of rings or infinite
cylinders, performing inextensional vibrations, where the axial displacement is
zero.

Finally, the case of n=4 was analysed following the same procedure as was
used in the n=2 investigation. Although this mode is not generally used in
vibratory gyroscopes it was studied to determine if the trends for the n=2 case
are repeated. The results of this analysis are shown in Figures 6–9. It was found
that in the cylinder supported at both ends the radial and the radial bending
stiffnesses had the largest influence on the natural frequency while in the cylinder
supported at only one end the radial stiffness had the largest influence followed
by the axial and rotational stiffnesses. The Bryan Factor was decreased by the axial
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restraint when both ends and when one end was supported. The Bryan Factor was
not influenced by the tangential stiffness when one end was supported as it was
in the n=2 case. The Bryan factor was close to that of a ring (0·118) for both
cases and was not greatly reduced by supporting both ends as it was in the n=2
case.

The different trends observed in the results for n=2 and n=4 make it
impossible to make general statements about the effects of the various boundary
stiffnesses on the frequency factors and Bryan Factors. It is therefore necessary
to examine each mode of interest and to draw conclusions for each mode
separately.

It was observed that the changes in natural frequency and Bryan Factor occur
when the non-dimensionalised stiffness is between 10−2 and 102. This indicates that
it is only necessary to consider the boundaries as elastic when they have stiffness
within this range. If the boundaries have stiffnesses outside this range it is possible
to treat the boundary stiffnesses as either zero or infinite as is done in the idealised
boundary conditions.

A cylinder which is to be used in a vibratory gyroscope, is required to have a
constant Bryan Factor, for example in the presence of temperature changes. It is
therefore desirable to design the cylinder and supporting means to ensure that the
boundary stiffnesses are out of the sensitive range.

4. CONCLUSIONS

The free vibrations of elastically supported cylinders including gyroscopic effects
may be calculated by the exact solution of the Flügge shell theory equations of
motion. The accuracy of Flügge shell theory, was confirmed for a non-rotating
cylinder with simply supported boundary conditions, by comparison with an exact
solution of the three-dimensional elasticity problem.

Departures from ideal clamped boundary conditions were investigated for a
cylinder supported at both ends and for a cylinder supported at one end only. The
results for the lowest frequency n=2 vibration mode are applicable to the design
of vibrating cylinder gyroscopes. The natural frequency, of this mode, was most
sensitive to changes in the tangential stiffness of the boundaries when both ends
were supported and to changes in the axial stiffness of the boundary when only
one end was supported. The Bryan Factor was decreased by increasing the
tangential stiffness of the boundaries. In general the Bryan Factor is higher and
also less sensitive to boundary stiffness variations when only one end is supported.

The results for the lowest frequency n=4 vibration mode indicate that these
trends do not apply to all vibration modes making it necessary to analyse all the
modes of interest in a particular cylinder with elastic boundary conditions.

If the non-dimensionalised stiffnesses of the boundaries are in the range 10−2

to 102 it is necessary to consider the boundaries to be elastic. Stiffnesses out of this
range may be considered to be zero (free) or infinite (rigid). If the boundary
conditions are designed to have stiffnesses out of this range the free vibration of
the cylinder will be practically insensitive to variatons in the boundary stiffnesses.
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APPENDIX A: CALCULATION OF AMPLITUDE RATIOS

Equations (6) can be used to write the ratios of the axial and tangential
displacements to the radial displacements. In the following equations the small
terms containing b2 have been neglected and n is assumed to be 0·3.

U0

W0
=

anb$0·65(a2 − n2)2 +1·405a2 −0·95n2 +0·65−D
V

v 00·7n+2
a2

n1%
+0·35an+0·65anD+0·6

V

v
Da

nb$−0·7a4 +0·7a2n2 −0·35n2 −1·35a2D+0·7
V

v
Dn%

−0·35n3 +0·805na2 + nD+
V

v
D[0·7n2 −2(a2 +D2)]

(A1)
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V0

W0
=

nb$0·65(a2 − n2)2 +1·405a2 −0·95n2 +0·65+D
V

v 00·7n+2
a2

n1%
+0·35n+0·65nD−0·6

V

v
D

b[0·35a4 −0·35n4 + a2D−0·35a2 +0·35n2D]

−0·35n2 −0·105a2 +1·3n
V

v
D−0·3D

. (A2)

The amplitude ratios are then calculated by substituting the roots (2a1, 2ig2, 2( p2 iq))
in equations (A1) and (A2), for a, as follows:

A1 = (V0/W0) with a= a1

A2 = (U0/W0) with a= a1

A3 = (V0/W0) with a=ig2

iA4 = (U0/W0) with a=ig2

A5 + iA6 = (V0/W0) with a= p+iq

A7 + iA8 = (U0/W0) with a= p+iq.

APPENDIX B: NOMENCLATURE

a mean radius of cylinder
A1, . . . , A8 amplitude ratios defined in Appendix A
C1, . . . , C8 displacement coefficients
E Young’s modulus
h cylinder wall thickness
k0

u , k0
v , k0

w , k0
w' axial, tangential, radial and rotational boundary stiffnesses at x=0

kL
u , kL

v , kL
w , kL

w' axial, tangential, radial and rotational boundary stiffnesses at x=L
k*u , k*v , k*w , k*w' non-dimensionalised axial, tangential, radial and rotational boundary

stiffnesses
L cylinder length
m axial mode number
n number of circumferential waves
S potential energy of the cylinder and boundaries
t time
T kinetic energy of the cylinder
u, v, w components of displacement in the axial, tangential and radial directions
U0, V0, W0 axial, tangential and radial displacement amplitudes
x, f axial and angular coordinates
a axial wave number
b dimensionless parameter, b= h2/12a2

D frequency factor, D=vazr(1− n2)/E
n Poisson’s ratio
r mass density
v circular frequency
V rate of angular rotation of cylinder.


